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ABSTRACT
Objective: Deep learning (DL) has become the prevailing method in chest radiograph analysis, yet its performance heavily

depends on large quantities of annotated images. To mitigate the cost, cold‐start active learning (AL), comprising an initial-

ization followed by subsequent learning, selects a small subset of informative data points for labeling. Recent advancements

in pretrained models by supervised or self‐supervised learning tailored to chest radiograph have shown broad applicability to

diverse downstream tasks. However, their potential in cold‐start AL remains unexplored.

Methods: To validate the efficacy of domain‐specific pretraining, we compared two foundation models: supervised TXRV and

self‐supervised REMEDIS with their general domain counterparts pretrained on ImageNet. Model performance was evaluated

at both initialization and subsequent learning stages on two diagnostic tasks: psychiatric pneumonia and COVID‐19. For
initialization, we assessed their integration with three strategies: diversity, uncertainty, and hybrid sampling. For subsequent

learning, we focused on uncertainty sampling powered by different pretrained models. We also conducted statistical tests to

compare the foundation models with ImageNet counterparts, investigate the relationship between initialization and subsequent

learning, examine the performance of one‐shot initialization against the full AL process, and investigate the influence of class

balance in initialization samples on initialization and subsequent learning.

Results: First, domain‐specific foundation models failed to outperform ImageNet counterparts in six out of eight experiments

on informative sample selection. Both domain‐specific and general pretrained models were unable to generate representations

that could substitute for the original images as model inputs in seven of the eight scenarios. However, pretrained model‐based
initialization surpassed random sampling, the default approach in cold‐start AL. Second, initialization performance was pos-

itively correlated with subsequent learning performance, highlighting the importance of initialization strategies. Third, one‐shot
initialization performed comparably to the full AL process, demonstrating the potential of reducing experts' repeated waiting

during AL iterations. Last, a U‐shaped correlation was observed between the class balance of initialization samples and model

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
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performance, suggesting that the class balance is more strongly associated with performance at middle budget levels than at low

or high budgets.

Conclusions: In this study, we highlighted the limitations of medical pretraining compared to general pretraining in the

context of cold‐start AL. We also identified promising outcomes related to cold‐start AL, including initialization based on

pretrained models, the positive influence of initialization on subsequent learning, the potential for one‐shot initialization, and
the influence of class balance on middle‐budget AL. Researchers are encouraged to improve medical pretraining for versatile DL

foundations and explore novel AL methods.

1 | Background

This section begins by motivating the use of active learning
(AL) to reduce annotation costs in deep learning (DL) models,
especially its orthogonal value compared to other strategies for
DL on limited annotated samples, including data
augmentation, transfer learning, and semisupervised learning.
We then differentiate between warm‐start and cold‐start AL,
highlighting that cold‐start AL better addresses real‐world
scenarios. Next, we illustrate common strategies and related
work for cold‐start AL, focusing on both the initialization and
subsequent learning stages. After that, we demonstrate the
potential of domain‐specific pretrained models, also known
as foundation models, in enhancing cold‐start AL. Finally, we
summarize our key contributions.

1.1 | Motivation

DL has achieved remarkable success in chest radiograph analysis
[1–3], but its performance heavily relies on large volumes of
chest radiographs and high‐quality diagnostic annotations [4, 5].
Unlike natural scene labeling, which primarily relies on common
sense [6, 7] and can leverage crowdsourcing platforms [8], chest
radiograph annotation requires specialized expertise [9], making
it time‐consuming and cost‐intensive [10]. To reduce annotation
costs, alleviate clinician workload, and optimize computational
resources by avoiding redundant data [11–13], AL has been
proposed to iteratively select a small subset of data points whose
annotations are most beneficial for model convergence, querying
these labels from experienced medical professionals as oracles
[10, 14, 15].

Although various strategies have been proposed to address
DL under the constraint of limited annotated samples, AL
offers a distinct and irreplaceable advantage worthy of focused
investigation. A commonly considered approach is data
augmentation, which involves applying transformations to
existing labeled data. However, this strategy potentially fails to
introduce truly novel or representative information and can
even degrade DL performance when augmented samples
are physically implausible or semantically meaningless [16].
In contrast, AL selects genuine data samples, avoiding the
reinforcement of existing biases, and the misrepresentation of
real‐world properties. Another popular technique is transfer
learning, which leverages a model pretrained on a source data
set for the target data set. However, transfer learning can
suffer from distribution mismatches between the source and
target data sets [17]. Even with fine‐tuning on small annotated
samples, biases inherent in the source data set are often

challenging to mitigate [18]. Under the same annotation
budget, AL directly optimizes the model for the target data set,
ensuring more efficient use of resources. A third approach is
semisupervised learning, which builds on limited annotated
data by exploiting the structure of unlabeled data. However, if
the initial labeled data set is poorly representative, semi-
supervised learning risks propagating errors and failing to
generalize effectively [19]. AL, however, dynamically adapts
to the model's learning state and iteratively refines the
model through active querying, thus mitigating the risks of
error propagation and poor generalization. It is important to
highlight that this comparison aims to underscore AL's com-
plementary value rather than diminish the utility of other
methods. Indeed, these techniques can be integrated with AL
to enhance performance, as suggested in prior studies [20–22].
In this work, we focus exclusively on AL to systematically
investigate the potential of AL in the context of recent ad-
vancements in foundation models.

1.2 | Related Work

1.2.1 | Warm‐Start and Cold‐Start AL

AL methods can be broadly classified into warm‐start
and cold‐start AL, depending on the initialization stage [23].
Specifically, warm‐start AL typically involves two stages:
an initial phase where the model is trained on a small,
preselected, annotated subset of images, and a subsequent
learning phase where various query strategies are employed to
select additional images for annotation and model fine‐tuning
based on the trained model [24]. Cold‐start AL also comprises
two stages, but unlike warm‐start AL, it begins without any
annotated samples. Instead, it autonomously selects initial
samples, sends them to oracles for annotation, and proceeds
with model training [25].

Although warm‐start AL is commonly studied and has
been applied to a spectrum of clinical tasks such as breast
mass localization [9], white matter tract segmentation [10],
optical coherence tomography segmentation [26], and so on
[6, 7, 27–33], it requires preselection of sample annotation
belonging to diverse classes in the initial stage. This reliance
is often impractical in real‐world AL scenarios, where
none of the samples in a new data set are labeled, making
it impossible to prepare representative instances for each
category [34], especially in medical scenarios with a
class‐skewed distribution [35]. Therefore, cold‐start AL is
more suited to real‐world applications and becomes the focus
of our study.
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1.2.2 | Cold‐Start AL Strategies

The primary challenge in cold‐start AL lies in the initialization
phase: how to select annotation‐worthy samples that cover
diverse classes and significantly contribute to model conver-
gence in the absence of label information. In other words, how
can raw image pixels be utilized to identify samples that merit
labeling? Upon completion of the initial sample selection and
annotation, standard warm‐start strategies can be employed
because the model, following the initialization stage, has
developed sufficient competency on the target data and task,
thereby satisfying the prerequisites for warm‐start AL.

For the initialization stage, random sampling is often the first
method considered by researchers. Although this method works
well on balanced data sets, it typically requires selecting a large
number of instances to capture all potential classes in imbal-
anced scenarios [35], which is impractical for AL formulations
and overlooks the informative sample features [36]. To address
these limitations, diversity sampling, also known as represent-
ativeness sampling, has been proposed. This method selects
samples that are representative of the underlying data distri-
bution of diverse classes [31] based on the modeling of raw
image pixels [37] in an unsupervised or self‐supervised manner.
For example, He et al. proposed a two‐stage clustering approach
to address the cold‐start problem in AL initialization, which is
adaptable to class imbalance [35]. In the first stage, the density
peak clustering algorithm [38] was used to separate samples
from majority and minority classes into distinct clusters. In the
second stage, a cluster‐adaptive method was employed to
identify the most representative samples within each cluster.
This approach effectively selects samples that improve both
class coverage and model performance.

For the subsequent learning stage, previous initialization
methods, such as random sampling [39] and diversity [40], can
also be employed. These approaches do not rely on annotation
information or models developed from the initialization phase,
whereas other methods for subsequent learning typically do.
Due to its simplicity [41] and outperformance [42], uncertainty
sampling, also known as informativeness sampling, is the most
widely used approach [31]. Specifically, this method selects data
points where the current model exhibits the greatest uncer-
tainty, often those near the decision boundary [41]. Common
uncertainty metrics include margin of confidence, least confi-
dence, and entropy [43, 44]. Uncertainty sampling can be fur-
ther integrated with diversity or other strategies to form hybrid
methods [23, 45–47]. For instance, Yang et al. proposed an
annotation suggestion method that integrates uncertainty and
diversity [48]. They first calculated the variance across a set of
bootstrap‐aggregated models [49], and then identified high‐
variance unlabeled samples [50]. Among these, the samples
with the highest similarity sum to all other unlabeled samples
were deemed representative and selected for annotation. Shen
et al. introduced a three‐step integrative strategy to gradually
identify the most informative samples [51]. First, they selected a
large subset with the highest uncertainty based on Monte Carlo
(MC) dropout [52]. Next, they refined the subset by retaining
samples that could represent the entire unlabeled set. Finally,
they excluded samples already similar to annotated data.
An alternative to multistep integration is the use of weighted

combinations of different metrics in a single step [53]. For
example, Mahapatra et al. computed sample informativeness as
a weighted sum of entropy‐based uncertainty and the mean
squared distance between the feature vectors of candidate
images and all other unlabeled samples [54].

1.2.3 | Domain‐Specific Pretraining for Cold‐Start AL

In chest radiograph analysis, pretraining plays a crucial role in
reducing the need for large training data sets while improving
model performance. Traditionally, pretraining involves the
collection and annotation of large‐scale data sets similar to the
target data set, followed by supervised learning to develop DL
models with optimal initial parameters for downstream tasks.
However, the rapid growth of unlabeled data has outpaced the
capacity of experts to provide annotations. To address this,
researchers have introduced self‐supervised learning, which
exploits the inherent structure and relationships within the data
to derive effective initial parameters. Self‐supervised learning
has been deployed on large‐scale medical data sets that span
different levels of specificity, from organ‐ or task‐specific
models such as those for abdominal organs [55] or sight‐
threatening eye diseases [56], to domain‐specific models like
those for chest radiographs [57, 58], and even general models
capable of handling multiple domains, including dermatology
photographs, fundus imaging, digital pathology, chest
radiographs, and mammography [59]. Both supervised and
self‐supervised models can generate low‐dimensional yet
information‐rich representation vectors for external data sets
from the same target domains that they were not trained on.
These numeric representations provide one of the overarching
advantages of pretrained models, serving as feature inputs for
downstream specialized models. Therefore, we refer to these
domain‐specific pretrained models, whether derived from
supervised or self‐supervised learning, as foundation models,
and use this term interchangeably with domain‐specific pre-
trained models in the following sections. By reducing the
dimensionality relative to the original images, foundation
models allow for more compact model parameters and lower
the computational cost of model training [60].

Foundation model‐based representations hold significant
potential for use in the initialization and subsequent learning
stages of cold‐start AL. In the initialization phase, clustering is a
common diversity sampling method, but it often faces conver-
gence challenges due to the high dimensionality of original
image pixel features [61]. These challenges can be mitigated by
employing low‐dimensional representation vectors [62]. Addi-
tionally, these representations can replace raw image pixels in
model design, enabling more efficient parameterization during
both the initialization and subsequent training stages. For
instance, researchers applied the BERT foundation model [63]
to address cold‐start sentence classification [64]. They encoded
samples into novel vectors that captured diversity through
hidden representations and uncertainty via model confidence
scores. Based on these vectors, they used K‐means++ clustering
[65] to select initial samples for annotation.

However, pretraining is not a novel concept in the DL domain.
Before the advent of domain‐specific foundation models,
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various DL models pretrained on ImageNet [66], a general
domain data set with human annotation, had already been
applied to diverse external data sets [67, 68], demonstrating the
ability to generate informative representations [69]. As such,
ImageNet pretrained backbones should be considered valuable
counterparts to foundation models, particularly because many
foundation models, such as CXR foundation [57], leverage
classic network architectures like ResNet [70], which also offer
ImageNet pretrained versions. Therefore, a thorough evaluation
of foundation models and their influence on cold‐start AL is
essential to understanding the capability of these models,
inspiring both new application scenarios for foundation
models and the development of novel AL methods in the era of
self‐supervised learning.

1.3 | Contributions

In this work, we provide the following contributions. First, we
contribute a systematic, quantitative, and reproducible analysis to
examine the effectiveness of domain‐specific pretrained models
against their ImageNet counterparts in both the initialization and
subsequent learning stages of cold‐start AL. Second, we propose a
representation‐based uncertainty sampling in the initialization
stage of cold‐start AL to address the difficulty that uncertainty
sampling strategies have no access to sample labels in the initial-
ization stage. Third, we conduct rigorous statistical tests to reveal
the relationship between AL initialization and subsequent learn-
ing, the comparison between the lightweight representation‐based
model and raw image‐based model, and the comparability of one‐
shot initialization and the complete AL under the same annotation
budget. Last, we implement correlation tests to identify the impact
of class balance of initialization samples on AL initialization and
subsequent learning.

2 | Methods

In this section, we begin by introducing key notations and
presenting a general formulation for cold‐start AL, encom-
passing both the initialization and subsequent learning stages.
We then detail specific strategies for each stage, leveraging
domain‐specific foundation models and their ImageNet coun-
terparts. We focus primarily on binary image classification to
align with the real‐world experiments in the following section.

2.1 | Cold‐Start AL Formulation

2.1.1 | Initialization

We denote the initial unlabeled and labeled image data sets as Du
0

and Dl
0, respectively. Before the initialization, ∅D =l

0 is an
empty set, and the unlabeled pool Du

0 contains N
u
0 unlabeled two‐

dimensional images Ii with the width ofW0 and the height of H0.
Then a query strategyQ0 is leveraged to select Nl

0 images Ij to be
annotated by oracles based on original image pixels. After that,
Du
0 is updated into  D I j N( ), = 1, 2, …,u

j
l

0 0 by removing the
selected images  I j N( ), = 1, 2, …,j

l
0 and professional medical

experts such as radiologists give binary labels Yj to each of the
selected images Ij, updating Dl

0 into  I Y j N( , ), = 1, 2, …,j j
l
0 .

Based on the Dl
0 consisting of samples and corresponding an-

notations, a classifier Mc is trained to learn the projection from
Ij to Yj. When the training of Mc is completed, the initialization
stage of cold‐start AL is finished and proceeded into the next
stage of subsequent learning.

2.1.2 | Subsequent Learning

Different from the initialization stage without any annotation
information, subsequent learning has a classifier Mc with certain
discriminability on the target task and therefore can use a
classifier‐based informative sampling strategy Q1. Assuming a
total annotation budget B N k N= + ×l l

0 1, in each query itera-
tion τ k= 1, 2, 3, …, , the subsequent learning strategy Q1 select
Nl
1 samples Is from the unlabeled pool Dτ

u
−1 and send them

to oracles for annotation, forming an annotated set
∪  D D I Y s N= ( , ), = 1, 2, …,τ

l
τ
l

s s
l

−1 1 . Meanwhile, the unlabeled
pool  D D I s N= \ ( ), = 1, 2, …,τ

u
τ
u

s
l

−1 1 is updated by removing
the selected images Is. Based on the updated annotated set Dτ

l ,
the classifierMc can be further trained, and upon completion, the
subsequent learning process can advance to the next iteration.

2.2 | Initialization Strategy

In the previous subsection, we introduced a general formulation for
cold‐start AL. Here, we present three different strategies based on
foundation models: diversity sampling, uncertainty sampling, and
hybrid sampling. Additionally, we discuss random sampling, a
common approach that does not require a pretrained model. Fig-
ure 1a illustrates the cold‐start AL initialization process for binary
disease diagnoses. Unlike the general formulation, the three strat-
egies require a foundation model Mf to process images Ii into
embeddings Ei which has much lower dimensions than the image
dimension ofW H×0 0. Also, previous literature [57, 71] has dem-
onstrated that Ei can replace Ii as model inputs, enabling the
development of a simplified modelM′c with comparable or superior
performance, as depicted by the dashed line in Figure 1a.

2.2.1 | Diversity Sampling

The core of AL is to select informative samples, though the
precise definition of informativeness remains an open question
[9]. Some researchers suggest that an effective strategy, known
as diversity sampling, is to select images that are representative
of the overall data set while avoiding redundancy from visually
similar images [51]. Among various diversity sampling strate-
gies, clustering methods are considered classic approaches
[72–75]. These methods have been validated as effective for
partitioning chest radiograph data sets into distinct clusters based
on image features [76]. The centroids of each cluster are deemed
diverse, as they originate from different clusters, and represent-
ative, as they serve as the central points of these clusters [77, 78].
We select K‐means [79] as the clustering method and follow
previous studies that split the same amount of clusters as the
annotation budget [27, 80–82]. Formally, the query strategy Q0

divides  D I i N= ( ), = 1, 2, …,u
i

u
0 0 into Nl

0 subgroups through
Ei
u‐based K‐means, selects the centroid sample Ij from each
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FIGURE 1 | Cold‐start AL workflow based on domain‐specific foundation models. (a) The initialization stage. (b) The subsequent learning stage.

After sample selection and expert annotation, supervised model training can be conducted using either the original image pixels or embeddings

derived from foundation models as classifier inputs.

cluster, and sends the selected samples to oracles for annotation
to constitute  D I Y j N= ( , ), = 1, 2, …,l

j j
l

0 0 .

2.2.2 | Uncertainty Sampling

In contrast to diversity sampling, which aims to select repre-
sentative samples, an alternative approach, called uncertainty
sampling, emphasizes the selection of the most uncertain
samples for the current model, positing that these samples
contribute most to model convergence. In the initialization
stage, sample uncertainty for the target task is unavailable. Nath
et al. [83] introduced a proxy task for image segmentation using
morphological operations and employed MC dropout to esti-
mate sample uncertainty [52]. However, their approach was
restricted to computed tomography. In contrast, we developed a
more generalizable auxiliary task based on foundation models
to enable the computation of sample uncertainty across a
broader range of applications.

Given that domain‐specific pretrained representation Ei en-
capsulates high‐density information from the original image
Ii [84–86], enabling a range of downstream tasks [87–89], we

hypothesize that Ei
u can serve as an auxiliary prediction target.

If a model exhibits uncertainty in predicting Ei, this suggests
that the mapping between Ii and the lower dimensional Ei is
challenging. Consequently, such samples are likely to be diffi-
cult for downstream tasks, including the target task. Formally,
based on the image‐representation pair  I E i N( , ), = 1, 2, …,i i

u
0 ,

we adopt the same architecture of Mc and modify its final
layer to match the dimension of Ei, generating the auxiliary
model Mu for uncertainty estimation. When the training of Mu

is completed, we follow the previous studies [51, 90–93] and
use MC dropout to approximate sample uncertainty [52].
Specifically, the trained model Mu takes Ii as the input and
feedforward it T times. In iteration φ, a random dropout
pattern is activated with a probability of P, and the model
output M I( )u φ i, is recorded. Based on the aggregation set
 M I φ T( ( )), = 1, 2, …,u φ i, , the inference variance is calculated
via  T M I T M I(1/ ) ( ( ) − (1/ ) ( ))φ

T
u φ i φ

T
u φ i=1 , =1 ,

2. A large vari-

ance demonstrates that the process of Ii by Mu is either highly
sensitive to neuron connectivity altering or akin to random
guessing, reflecting significant uncertainty [51, 93]. The
Ii with the highest uncertainty, that is, inference variance, are
selected and sent to oracles for annotation to constitute

 D I Y j N= ( , ), = 1, 2, …,l
j j

l
0 0 .
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2.2.3 | Hybrid Sampling of Diversity and Uncertainty

Diversity sampling selects representative samples while within
a limited budget of AL, it might choose uninformative samples
that are easy to distinguish and contribute marginally to model
capability [94]. Uncertainty sampling suffers from selecting
redundant samples to be labeled due to similar high uncertainty
values [95] and a potential improvement could be a hybrid
method to identify highly diverse and uncertain samples to
convey more information with the same amount of annotated
data [96, 97].

We employ a classic two‐step hybrid method [81, 98, 99] to first
partition  D I i N= ( ), = 1, 2, …,u

i
u

0 0 into Nl
0 subgroups through

Ei
u‐based K‐means and then from each cluster, selects the most

uncertain Ii with the highest inference variance calculated
by MC dropout as detailed in the previous subsection. This
two‐step approach ensures the selection of diverse and
uncertain samples to construct Dl

0 comprising Nl
0 samples along

with their annotations.

2.2.4 | Random Sampling

In addition to the three initialization strategies based on
domain‐specific foundation models, random sampling remains
the most widely used and traditional method, as shown in
previous studies [6, 7, 10, 27–33, 74]. Although commonly
employed, random sampling is not without limitations.
For instance, prior research has demonstrated that it does not
ensure the informativeness of the initial samples selected
for annotation, which may negatively impact downstream
AL performance [10]. Moreover, random sampling is prone to
issues related to data imbalance, especially during initialization,
where selecting minority samples can require a substantial
budget [35, 100].

2.3 | Subsequent Learning Strategy

Upon completion of the initial sample selection and annotation,
a model with sufficient competency on the target data and task
becomes available, and based on the model, we can step into
the subsequent learning stage of cold‐start AL, as depicted in
Figure 1b. Following the initial sample selection and annota-
tion, a discriminative model Mc or M′c is developed, enabling
the next stage of subsequent learning. Although a range of
warm‐start strategies could be applied at this stage, our study
focuses on comparing foundation models with their ImageNet
counterparts. We therefore employ classic uncertainty sampling
strategies [100], which have demonstrated strong performance
in prior studies [78, 101–103]. It is important to note that the
uncertainty in this phase, given the availability of a discrimi-
native model, differs from that discussed during the initializa-
tion stage, which will be further elaborated in the following
paragraph.

In the context of subsequent learning, uncertainty sampling
encompasses three primary methods: least confidence sampling,
margin of confidence sampling, and entropy‐based sampling [30].
Notably, these methods converge on the same conclusion: the

most uncertain samples are those for which model predictions
M I( )c s or M E′ ( )c s approach 0.5 in our experimental settings of
binary classification [41]. Formally, we denote the predictive
probability of Is towards the positive class as M I( )c s,1 and the
negative class as M I M I( ) = 1 − ( )c s c s,0 ,1 .

Least confidence sampling selects the samples whose predictive
probabilities P I( )s of the most probable class are low. In binary
classification, the most probable class is either positive or negative.
Given that ≤ ≤M I0 ( ) 1c s,1 , if M I( ) > 0.5c s,1 , the most probable
class is the positive class, resulting in P I M I( ) = ( ) > 0.5s c s,1 .
Conversely, if M I( ) < 0.5c s,1 , the most probable class is the neg-
ative class, and P I M I( ) = 1 − ( ) > 0.5s c s,1 . Therefore, the lowest
probability occurs when M I( ) = 0.5c s,1 .

Margin of confidence sampling identifies the samples with
small difference between the first and second most probable
classes. In binary classification, the difference is expressed
as M I M I M I M I| ( ) − ( )| = | ( ) − 1 + ( )|c s c s c s c s,1 ,0 ,1 ,1 . Clearly, the
lowest difference is 0, which is achieved when M I( ) = 0.5c s,1 .

Entropy sampling [28, 50] chooses the samples with the highest
entropy sum of predictive probabilities across all classes. The sum
is expressed as M I M I M I M I− ( )log( ( )) − ( )log( ( )) =c s c s c s c s,1 ,1 ,0 ,0

M I M I M I M I− ( )log( ( )) − (1 − ( ))log(1 − ( ))c s c s c s c s,1 ,1 ,1 ,1 in bin-
ary classification. The first derivative of the sum is −log
M I M I( ( )/(1 − ( )))c s c s,1 ,1 , with a stationary point occurring at
M I( ) = 0.5c s,1 . Consequently, the maximum of the sum is
attained when M I( ) = 0.5c s,1 .

In addition to uncertainty sampling strategies, we implement
random sampling, a widely used and well‐established approach
[10, 32, 48, 76, 104, 105], to select samples in the subsequent
learning stage.

3 | Experiments

This section begins by presenting a comprehensive overview of
the experimental settings, including data sets, AL strategies, DL
implementation details, evaluation metrics, and statistical tests.
Next, we present the results of various AL strategies applied
across previous experimental settings and foundation models
developed by supervised and self‐supervised learning. Finally,
the statistical test results are analyzed to compare foundation
models with their ImageNet counterparts, evaluate pixel‐based
classifiers against representation‐based classifiers, examine the
relationship between initialization and subsequent learning,
and assess the effectiveness of different query strategies: one‐
shot initialization versus initialization followed by iterative
subsequent learning.

3.1 | Experimental Settings

3.1.1 | Data Sets

To ensure the robustness of our experimental results [106], we
employed two data sets featuring diverse population cohorts,
sample sizes, and disease categories: the Guangzhou data set
[107, 108] and the Pakistan data set [109, 110]. The Guangzhou
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data set, collected by the Guangzhou Women and Children's
Medical Center, comprised 5856 chest radiographs from retro-
spective cohorts of pediatric patients aged 1–5 years, with 4273
images diagnosed with pneumonia. In contrast, the Pakistan
data set was considerably smaller and contained a total of 450
chest radiographs from a local hospital in Pakistan, among
which 390 images were diagnosed with COVID‐19. Both data
sets were collected after the release of foundation models and
were specifically chosen to simulate real‐world scenarios,
enabling an assessment of the benefits these models bring to
AL. We resized all radiographs from the two data sets into the
resolution of 224× 224 to comply with DL classifiers [111],
foundation models [59], and ImageNet counterparts [70].

The data sets were split using an 80/20 ratio for the Guangzhou
data set, resulting in 4686 images for training (3419 diseased)
and 1170 images for testing (854 diseased). For the Pakistan
data set, a 50/50 split was applied, yielding 225 images for both
training and testing sets, with 195 diseased images in each set.
A larger proportion of samples was allocated to the testing set in
the Pakistan data set due to its small sample size, ensuring
greater stability in testing. We did not create separate validation
sets with diagnostic labels, unlike prior cold‐start AL studies
[48, 112] to replicate real‐world cold‐start scenarios where
no annotated samples were available at the outset [113].
Additionally, all labels were hidden during the initial sample
selection and remained inaccessible until chosen by the query
strategy in subsequent learning stages, simulating the cold‐start
AL process [51].

3.1.2 | Foundation Models and ImageNet Counterparts

TorchXRayVision (TXRV) [114] is an open‐source library
developed for chest radiograph analysis, offering a range of
representation learning models trained on 950,778 chest
radiographs from 13 data sets collected across diverse regions,
including the United States, China, Spain, and Vietnam. These
models served as feature extractors (representation providers).
For input images with a resolution of 224× 224, TXRV utilizes
DenseNet‐121 [115] as its backbone. Notably, TXRV was trained
using fully supervised methods rather than self‐supervised
approaches. In this study, we used TXRV to compare a domain‐
specific supervised model with a general supervised model,
specifically the ImageNet pretrained DenseNet‐121 [116].

Robust and Efficient MEDical Imaging with Self‐supervision
(REMEDIS) strategy [59] combines supervised pretraining on
natural images with contrastive self‐supervised pretraining
on chest radiographs. Specifically, it employs the ResNet‐152
architecture [70] with pretrained weights from BiT‐L [117],
which were trained on a large‐scale database of natural images
(JFT‐300M) [118]. REMEDIS was then trained using the self‐
supervised technique of SimCLR [119] on unlabeled medical
data sets across five domains: chest radiographs, fundus imag-
ing, digital pathology, mammography, and clinical dermatology.
After that, REMEDIS learned generalizable representations that
can be paired with a classifier head to map them to domain‐
specific labels for downstream tasks. REMEDIS has proven
particularly effective for chest radiograph classification [120],
and therefore we adopted it as a domain‐specific self‐supervised

model for comparison with ImageNet pretrained ResNet‐152.
For both TXRV and REMEDIS, we utilized the embeddings from
the final layer preceding the classification head as model repre-
sentations for diverse AL strategies and simplified classifiers.

3.1.3 | AL Strategies

For cold‐start initialization, we performed five experiments
using budgets ranging from 10 to 50, with an incremental step
of 10 samples. Diversity sampling employed classic K‐means
clustering, generating a number of clusters equal to the budget,
and selecting the sample closest to each cluster centroid. In
uncertainty sampling, estimators were trained using inputs of
original images and outputs of representations from foundation
models or ImageNet counterparts. Estimators then processed
each sample 100 times with a dropout activation probability of
0.5 to stably compute the variance of model predictions [121],
selecting the samples with the top variance per the allocated
budget. The hybrid method integrated diversity and uncertainty
strategies by generating a number of clusters equal to the
budget and then selecting the sample with the highest variance
from each cluster to form the initialization set. Random sam-
pling was simulated 100 times for each initialization budget.
For each simulation, the high‐budget group included all
samples from the low‐budget group to ensure comparability in
downstream analyses.

For subsequent learning, we allocated an initial budget of
10 and a subsequent learning budget of 40 to enable a direct
comparison between one‐shot initialization and the full AL
strategy with both initialization and subsequent learning. The
subsequent learning stage consisted of 4 iterations, each with a
budget of 10. Due to the convergence of the three uncertainty
strategies, 10 samples with predictive probabilities closest
to 0.5 were selected based on the current classifier in each
iteration. Random sampling, similar to the initialization,
was benchmarked 100 times for comparison. In each iteration
of the subsequent learning process, 10 samples were randomly
selected from the unlabeled set.

For both initialization and subsequent learning stages, we
established the same upper bound of model performance
by training classifiers using all available training samples and
their expert annotations. This budget was referred to as the “all
samples.”

3.1.4 | Implementation Details

Two main categories of DL models were developed in this study:
one for binary classification tasks and another for uncertainty
estimation during the initialization phase. We implemented
binary classifiers based on VGG‐11 [111] to distinguish either
pneumonia or COVID‐19 in the Guangzhou data set and the
Pakistan data set, respectively. VGG‐11 architecture was selected
for its extensive use in AL studies [7] and its reliable convergence
on small‐sample data sets [122–124]. In addition to the full VGG‐
11 architecture, which used original images as inputs, we also
developed simplified models based on previous studies [57, 125].
Specifically, we implemented three‐layer multilayer perceptron
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(MLP‐3) models with intermediate layers of 512 and 256 neurons,
using representations generated by foundation models as inputs
[60]. The second category of DL models focused on uncertainty
estimation, using the same VGG‐11 architecture but with output
layers modified to match the dimensionality of the target repre-
sentations from foundation models.

For the training of binary classifiers, we utilized a Stochastic
Gradient Descent (SGD) optimizer [126] with a learning rate of
1e−3 and a momentum of 0.9. The batch size was fixed at 10,
matching the initialization budget. To mitigate the imbalance
between major and minor samples [127, 128], a weighted cross‐
entropy loss function was applied. Training was conducted for
200 epochs, with a linear scheduler that reduced the learning
rate by a factor of 0.5 if no improvement was observed over 10
consecutive epochs. An early stopping criterion was employed if
no progress was made over 20 consecutive epochs. For the
training of uncertainty estimators, all configurations were kept
constant, except for the learning rate, which was adjusted to
1e−4, and the loss function, which was changed to mean
squared error to align with the predictive targets of image
representations in the continuous space.

Upon the completion of sample annotation queries and binary
classifiers' training, the classification performance was assessed
on the hold‐out test sets from both the Guangzhou and Pakistan
data sets. Following the previous literature [129, 130], the eva-
luation utilized the area under the receiver operating character-
istic curve (AUROC) and the area under the precision‐recall
curve (AUPRC) due to their reliability in scenarios involving
imbalanced data [131, 132]. Metrics such as accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value
were excluded due to their vulnerability to instability in the
presence of extreme data imbalances [133, 134]. Standard devi-
ations for each metric were estimated using the nonparametric
bootstrap method [135]. The study was conducted in PyTorch
1.12.1 and the code has been open access [136] for reproduc-
ibility. All experiments were implemented on a Dell Precision
7920 Tower Workstation with an Intel Xeon Silver 4210 CPU and
an NVIDIA GeForce RTX 2080 Super GPU.

3.1.5 | Statistical Tests

We conducted statistical tests to assess whether significant
differences exist in cold‐start AL performance across various
configurations [35]. Our first inquiry sought to determine
whether domain‐specific foundation models outperform
their ImageNet pretrained counterparts. We also investigated
whether simplified classifiers based on feature representations
could surpass more complex classifiers relying on original
image pixels. Additionally, we aimed to establish whether
effective initialization contributes to enhanced subsequent
learning. Finally, we examined whether a one‐shot initialization
can achieve performance comparable to the complete cold‐start
AL process, which includes initialization and multiple itera-
tions of subsequent learning; this approach offers greater ease of
implementation and user‐friendliness [137, 138]. For the anal-
ysis of the relationship between initialization and subsequent
learning, we employed the Pearson correlation coefficient [139].
The same correlation test was performed to evaluate the

influence of class balance in the initialization samples on model
performance in both initialization and subsequent learning.
In addressing the other three questions, we utilized the paired
t‐test [140] to compare the performance of the two competing
approaches.

3.2 | Results

3.2.1 | Cold‐Start Initialization

Figures 2 and 3 illustrate the AUROC and AUPRC performance
of various strategies and model backbones during the cold‐start
AL initialization on the Guangzhou and Pakistan data sets,
respectively. In the odd‐numbered columns, curve plots depict
the mean values of AUROC and AUPRC, whereas the even‐
numbered columns present bar plots displaying their standard
deviations, calculated via nonparametric bootstrap. The first
row in both figures displays two baseline query strategies: all
samples and random sampling. The horizontal dashed lines in
Figures 2a,c and 3a,c represent the upper bound of classification
performance, achieved by training on the full set of samples and
annotations. Random sampling was the most common practice
in cold‐start initialization, and we compared this method
with initialization strategies based on foundation models and
ImageNet pretrained counterparts.

The subplots in the second, third, and fourth rows present model
performance based on samples selected by diversity, uncertainty,
and hybrid sampling, respectively, each applied to the four rep-
resentation generation models. Using the samples queried by
these diverse strategies, we developed both a full VGG‐11 model
and a simplified MLP‐3. The MLP‐3, based on representations,
consistently underperformed the VGG‐11 model trained on
original pixels, suggesting that low‐dimensional representations
derived from foundation models and ImageNet counterparts may
lose critical information embedded in the original images. For the
VGG‐11 classifiers, representation‐based sampling outperformed
random sampling in 47 out of 60 scenarios for the Guangzhou
data set and 46 out of 60 for the Pakistan data set, indicating that
representation‐based strategies reduced annotation requirements
while providing superior initializations. Among the three
representation‐based strategies, diversity and hybrid sampling
achieved the best performance in 16 out of 20 and 14 out of 20
scenarios for the Guangzhou and Pakistan data sets, respectively.
This suggested that for data sets with small sample sizes, such as
the Pakistan data set, the hybrid method that incorporated both
diversity and uncertainty may be preferred. In contrast, for larger
data sets, such as the Guangzhou data set, diversity sampling
remained competitive. Additionally, across all strategies, as the
initialization budget increased, the standard deviation of model
performance decreased, demonstrating that a larger sample size
not only improved model accuracy but also enhanced prediction
robustness. For detailed numeric results, see Tables A1 and A2.

3.2.2 | Cold‐Start Subsequent Learning

Based on the classifiers trained on 10 samples selected by dif-
ferent initialization strategies, subsequent learning was per-
formed using uncertainty‐based iterations [23], with 10 samples
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queried per iteration. Figures 4 and 5 illustrate the classification
performance on the Guangzhou and Pakistan data sets,
respectively. The arrangement of subplots in Figures 4 and 5
mirrors that of Figures 2 and 3, with the following distinctions:
(1) the learning strategy was based solely on classifier uncer-
tainty, and the legend in each subplot indicates the initializa-
tion strategy; (2) samples selected under high‐budget conditions
included all samples from low budgets as they were consecutive
procedures, which was not guaranteed in the initialization
stage; and (3) the X‐axis representing the overall budget
included both the initialization and subsequent learning phases:
For example, a budget of 10 + 20 denoted an initialization
budget of 10 samples, followed by an additional budget of 20
samples for the subsequent learning.

As annotation budgets increased, VGG‐11 performance initially
improved over multiple iterations before quickly converging,
with additional samples yielding only marginal gains. This
phenomenon was attributed to the relative simplicity of the two
binary classification tasks compared to more complex clinical
tasks, such as low‐contrast lesion segmentation [141–143], as
demonstrated by the strong classification performance before

subsequent learning. Although some performance improve-
ment to the upper bound in Figures 4a,c and 5a,c remained
possible, achieving this would require approximately 100 times
more annotations for the Guangzhou data set and 10 times
more for the Pakistan data set. This underscored the effective-
ness of AL in balancing annotation costs with model perform-
ance. Compared with VGG‐11 models, the representation‐based
MLP‐3 classifiers were inferior, aligning with previous initial-
ization results. Additionally, MLP‐3 classifiers exhibited the risk
of overfitting in Figures 4e,g and 5i,k,m,o: their predictive
performance declined when more samples were added to the
labeled training set. For detailed numeric results, see Tables A3
and A4.

Models initialized with diversity and hybrid sampling
consistently outperformed uncertainty sampling, achieving the
highest performance in 8 and 7 out of 16 learning scenarios for
the Guangzhou data set, and 8 and 5 out of 16 scenarios for the
Pakistan data set. This consistent outperformance of diversity and
hybrid sampling highlighted the benefit of effective initialization
for both the initialization and subsequent learning stages. In the
next subsection, we will extend these observational findings with

FIGURE 2 | One‐shot initialization performance on the Guangzhou data set. Subgraphs (a–p) present specific information detailed in the following

explanations. The first, second, third, and last columns present the mean values of AUROC, the standard deviation of AUROC, the mean values of AUPRC,

and the standard deviation of AUPRC, respectively. The first row displays the results for all samples with annotations, the upper bound, and random

sampling. The second, third, and final rows show the outcomes for diversity sampling, uncertainty sampling, and hybrid sampling, respectively.
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rigorous statistical tests. Specifically, we would compare repre-
sentations from foundation models and ImageNet counterparts,
evaluate different classification backbones, explore the relation-
ship between initialization and subsequent learning, and contrast
one‐shot initialization with the complete AL process.

3.2.3 | Comparative Study on Classification Backbones

The primary question addressed in this study was whether
foundation models designed for chest radiograph analysis out-
performed their ImageNet counterparts pretrained on images
from the natural domain. We conducted a paired t‐test to
compare their performance during both the initialization and
subsequent learning stages using the Guangzhou and Pakistan
data sets. The null hypothesis posited that the performance of
foundation models and ImageNet counterparts would be sta-
tistically identical, whereas the alternative hypothesis suggested
that the performance of foundation models is superior to that
of ImageNet counterparts. As shown in Table 1, foundation
models outperformed their ImageNet counterparts in only
two out of eight experiments. Consequently, in the context of

cold‐start AL, foundation models failed to meet our expecta-
tions as generalist models.

Another objective of the foundation model was to generate
representations that could be directly utilized as input features,
thereby facilitating lightweight classification backbones, such as
MLP, to achieve high‐fidelity predictions with reduced computa-
tional costs [57, 59, 114]. To assess this, we compared the per-
formance of VGG‐11 with that of the lightweight MLP‐3 [57, 125].
The null hypothesis posited that the performance of MLP‐3 using
generated representations was equivalent to that of VGG‐11 using
original pixel data, whereas the alternative hypothesis proposed
that the performance of MLP‐3 was inferior to that of VGG‐11.
Table 2 illustrates that MLP‐3 statistically significantly under-
performed VGG‐11 in seven out of eight scenarios.

We identified that representation‐based strategies outperformed
default random sampling during the initialization stage. How-
ever, the extent to which these benefits extend to subsequent
learning stages remained inadequately explored. To investigate
this, we calculated the Pearson correlation coefficient of
the AUROC and the AUPRC between model performance in

FIGURE 3 | One‐shot initialization performance on the Pakistan data set. Subgraphs (a–p) present specific information detailed in the following

explanations. The first, second, third, and last columns present the mean values of AUROC, the standard deviation of AUROC, the mean values of AUPRC,

and the standard deviation of AUPRC, respectively. The first row displays the results for all samples with annotations, the upper bound, and random

sampling. The second, third, and final rows show the outcomes for diversity sampling, uncertainty sampling, and hybrid sampling, respectively.

119 of 161

 27711757, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hcs2.70009, W

iley O
nline L

ibrary on [18/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the initialization stage and the subsequent learning stage. Our
null hypothesis was that the correlation coefficient between the
performance of cold‐start initialization and subsequent learning
did not significantly deviate from zero, whereas the alternative
hypothesis asserted that this correlation was significantly
greater than zero. As shown in Table 3, model performance
during the initialization stage was positively correlated with
performance in the subsequent learning stage, suggesting that
researchers should pay more attention to effective initialization
strategies instead of using random sampling as a default [144].

Another question we sought to address was whether one‐shot
initialization identified samples capable of training models
with performance comparable to those selected through both
initialization and iterative learning stages. Consistent with the
first and second statistical tests, we conducted a paired t‐test
between the two approaches using an equivalent overall budget.
The null hypothesis posited that the average performance of
classifiers utilizing one‐shot initialization was identical to that
of classifiers employing a full AL cycle of both initialization and
subsequent learning. Conversely, the alternative hypothesis
asserted that the performance of classifiers using one‐shot

initialization was inferior to that of classifiers employing the
integrated approach. As presented in Table 4, all p‐values ex-
ceeded 0.05, indicating that one‐shot initialization was compa-
rable to the complete AL cycle in the medical task of chest
radiograph classification.

Finally, we investigated whether model performance was in-
fluenced by the class balance of the initialization samples,
specifically testing the hypothesis that a balanced class distri-
bution could enhance performance. The null hypothesis posited
no significant correlation deviating from zero between the
minority class proportion in the initialization samples and
the classifier's performance during cold‐start initialization or
subsequent learning. In contrast, the alternative hypothesis
suggested that this correlation was significantly greater than
zero. As shown in Table 5, no statistically significant correlation
was observed in both stages. Interestingly, a U‐shaped trend in
p‐values was observed during both stages of the Guangzhou
data set and the cold‐start initialization of the Pakistan data set,
indicating that the class balance was more strongly correlated
with performance at intermediate budget levels compared to
low or high budgets.

FIGURE 4 | Subsequent learning performance on the Guangzhou data set. Subgraphs (a–p) present specific information detailed in the following

explanations. The first, second, third, and last columns present the mean values of AUROC, the standard deviation of AUROC, the mean values of AUPRC,

and the standard deviation of AUPRC, respectively. The first row displays the results for all samples with annotations, the upper bound, and random

sampling. The second, third, and final rows show the outcomes for diversity sampling, uncertainty sampling, and hybrid sampling, respectively.
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4 | Discussion

In this study, we conducted a quantitative analysis to evaluate
the performance of domain‐specific pretrained models com-
pared to their ImageNet counterparts during both the initial-
ization and learning stages of cold‐start AL. Unlike foundation

models in natural language processing [145–147], our findings
reveal a notable disparity in the efficiency of pretrained models
within the domain of medical imaging [148]. In most experi-
ments, models pretrained on chest radiographs, whether
through supervised or self‐supervised learning, did not surpass
those pretrained on natural images in selecting informative

FIGURE 5 | Subsequent learning performance on the Pakistan data set. Subgraphs (a–p) present specific information detailed in the following

explanations. The first, second, third, and last columns present the mean values of AUROC, the standard deviation of AUROC, the mean values of AUPRC,

and the standard deviation of AUPRC, respectively. The first row displays the results for all samples with annotations, the upper bound, and random

sampling. The second, third, and final rows show the outcomes for diversity sampling, uncertainty sampling, and hybrid sampling, respectively.

TABLE 1 | Paired t‐test between classifiers initialized based on foundation models and ImageNet pretrained counterparts.

Data set Foundation model AL stage p‐value of AUROC p‐value of AUPRC

Guangzhou data set TXRV Cold‐start initialization 2.74e−2* 2.89e−2*

Subsequent learning 3.10e−1 1.57e−1

REMEDIS Cold‐start initialization 1.59e−1 2.94e−1

Subsequent learning 9.96e−1 9.97e−1

Pakistan data set TXRV Cold‐start initialization 2.59e−1 9.34e−2

Subsequent learning 4.80e−2* 2.99e−2*

REMEDIS Cold‐start initialization 8.47e−1 7.54e−1

Subsequent learning 9.98e−1 9.96e−1

*The p‐value is less than 0.05, demonstrating statistical significance at a confidence level of 95%.
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samples for cold‐start AL. Also, the representation did not
improve the performance of a simplified model based on
MLP architectures, contrary to researchers' expectations that it
would surpass the performance of a more complex model using
original images as inputs. Additionally, the class balance
of initialization samples did not consistently exhibit a positive
correlation with model performance across varying budgets in
AL initialization and subsequent learning.

The relative inefficiency of domain‐specific pretrained models
compared to ImageNet‐trained models can be attributed to
several factors. In general, when domain‐specific models are
trained on a limited number of samples, their generalization
capabilities are often inferior to those of ImageNet‐trained
models, primarily due to differences in sample and class
diversity [149]. However, in our experiments, both domain‐
specific models were trained on data sets of comparable size to
ImageNet. Beyond data scale, model architecture also influ-
ences the representation learning capacity of pretrained models
[150, 151]. In this study, we standardized the architecture across
domain‐specific and ImageNet‐trained models, ensuring that
model architecture did not influence the comparison outcomes.
We hypothesize that the inefficiency raised because the latent
features in the two data sets may not be fundamentally com-
plex, as evidenced by the rapid model convergence with only a

few annotated samples. Thus, despite chest radiographs
being visually distinct from general domain images, the low‐ to
mid‐level features learned from ImageNet appear sufficient
for effectively discriminating between different images in this
context [152–154].

A recent study by Huix et al. [145] also reports similar experi-
mental results. They evaluated five vision transformer‐based
foundation models: SAM [155], SEEM [156], DINOv2 [157],
CLIP [158], and BLIP [159], across four well‐established medi-
cal imaging data sets. All five models employ transformer‐based
architectures, allowing for direct comparison with the baseline
ImageNet pretrained vision transformer. The results revealed
that only one model, DINOv2, consistently outperformed the
ImageNet pretrained counterpart in four comparative experi-
mental configurations, including whether a linear head or a
complex DeiT [160] was used on top of the foundation models,
and whether the foundation model parameters were frozen or
not. Similar to our findings, the frozen foundation models with
a linear head performed worse than those with DeiT, a more
complex architecture. Interestingly, when the foundation model
parameters were fine‐tuned using target data, the linear head
outperformed the transformer, a finding that merits further
investigation. Although their work focused on comparing
general domain foundation models with ImageNet‐trained
models in diverse medical imaging tasks, our study addresses
a gap by further assessing whether models specifically designed
for chest radiograph analysis can outperform ImageNet‐trained
counterparts in tasks within the target domains.

This study also uncovered inspiring findings. First, compared to
the commonly used random sampling strategy, which has
demonstrated decent performance in prior work [74, 161, 162],
both chest radiograph pretrained models and their ImageNet
counterparts led to improved performance. This suggests that
representation‐based initialization may be a superior alternative
to random sampling for future AL applications, potentially
achieving classifier performance comparable to models trained
on fully annotated data sets [141, 142]. The advantages of a
robust initialization were further supported by a statistically
significant positive correlation between initial model perform-
ance and subsequent learning outcomes.

Second, we found that one‐shot initialization performed on par
with complete AL across both the Guangzhou and Pakistan

TABLE 2 | Paired t‐test between MLP‐3 using representations and VGG‐11 using original pixels in cold‐start initialization.

Data set Representation source AL stage p‐value of AUROC p‐value of AUPRC

Guangzhou data set TXRV Cold‐start initialization 3.62e−10* 3.52e−9*

Subsequent learning 2.30e−7* 8.49e−7*

REMEDIS Cold‐start initialization 3.35e−5* 1.81e−6*

Subsequent learning 2.35e−3* 1.83e−3*

Pakistan data set TXRV Cold‐start initialization 1.98e−3* 1.88e−4*

Subsequent learning 9.99e−3* 1.33e−3*

REMEDIS Cold‐start initialization 3.83e−4* 6.29e−4*

Subsequent learning 7.91e−2 1.42e−2*

*The p‐value is less than 0.05, demonstrating statistical significance at a confidence level of 95%.

TABLE 3 | Pearson correlation coefficient between cold‐start ini-
tialization and subsequent learning. Classifiers were developed using

the same architecture of VGG‐11 and original pixels.

Data set
Overall
budget

p‐value of
AUROC

p‐value of
AUPRC

Guangzhou
data set

10 + 10 2.69e−5* 2.13e−5*

10 + 20 4.03e−5* 8.33e−5*

10 + 30 2.56e−5* 7.98e−4*

10 + 40 2.05e−4* 5.52e−4*

Pakistan
data set

10 + 10 3.66e−3* 4.92e−3*

10 + 20 1.19e−3* 1.82e−3*

10 + 30 1.23e−3* 6.84e−3*

10 + 40 2.89e−3* 7.61e−3*

*The p‐value is less than 0.05, demonstrating statistical significance at a
confidence level of 95%.
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data sets. This approach alleviates the need for repeated experts'
involvement during AL iterations, enabling continuous training
of DL models without delays caused by awaiting new sample
annotations [137, 138]. Similar one‐shot initialization strategies,
such as representative annotation, have also been explored in
recent studies [72]. Specifically, it has two components to select
samples: the first component uses autoencoder [163], varia-
tional autoencoder [164], or generative adversarial networks
[165] to learn efficient data representation in an unsupervised
manner. Based on these clustering‐friendly representations, the
second component uses agglomerative clustering and applies
the greedy max‐cover strategy to select images from each clus-
ter. In 2D gland segmentation, the one‐shot initialization
method demonstrated performance comparable to state‐of‐the‐
art iterative approaches while remarkably reducing experts'

waiting times. This time‐saving advantage was even more pro-
nounced in 3D segmentation of myocardium and great vessels.
Jin et al. [138] proposed a one‐shot AL method that integrates
contrastive learning with diversity sampling. Their approach
demonstrated superior performance compared to random sam-
pling and two iterative AL strategies of Bayesian sample query
[166] and core‐set [167] in skin lesion segmentation, remote
sensing image segmentation, and chest x‐ray segmentation. The
two preceding one‐shot AL methods rely on informative repre-
sentations, highlighting the potential of exploring domain‐specific
foundation models as representation providers.

Third, although no statistically significant correlation was
observed between the sample balance ratio and model perform-
ance, a U‐shaped trend in p‐values suggests that the class balance

TABLE 4 | Paired t‐test between classifiers developed using one‐shot initialization and complete AL cycle.

Data set

Overall budget

p‐value of
AUROC

p‐value of
AUPRCInitialization‐only

Initialization + subsequent
learning

Guangzhou data set 20 10 + 10 4.38e−1 5.48e−1

30 10 + 20 8.04e−1 7.99e−1

40 10 + 30 8.08e−1 7.81e−1

50 10 + 40 5.41e−1 5.74e−1

Pakistan data set 20 10 + 10 9.74e−1 9.84e−1

30 10 + 20 4.56e−1 5.15e−1

40 10 + 30 8.94e−1 9.36e−1

50 10 + 40 5.38e−1 4.58e−1

TABLE 5 | Pearson correlation coefficient between minority class proportion and model performance in different AL stages. Classifiers were

developed using the same architecture of VGG‐11 and original pixels.

Data set AL stage Overall budget p‐value of AUROC p‐value of AUPRC

Guangzhou data set Cold‐start initialization 10 0.283 0.234

20 0.099 0.094

30 0.056 0.052

40 0.063 0.055

50 0.453 0.530

Subsequent learning 10 + 10 0.240 0.102

10 + 20 0.089 0.057

10 + 30 0.079 0.069

10 + 40 0.300 0.316

Pakistan data set Cold‐start initialization 10 0.196 0.535

20 0.297 0.506

30 0.131 0.168

40 0.816 0.813

50 0.793 0.753

Subsequent learning 10 + 10 0.080 0.098

10 + 20 0.186 0.210

10 + 30 0.667 0.658

10 + 40 0.809 0.867
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is more strongly associated with performance at intermediate
budget levels than at low or high budgets. We propose that this
phenomenon arises because, in low‐budget scenarios, the data
set's balance ratio exerts minimal influence on model perform-
ance, as the limited number of training samples constrains the
achievable upper bound of model performance. Conversely, in
high‐budget scenarios, the abundant training samples ensure
the lower bound of model performance, thereby limiting the
observable impact of the balance ratio. In both cases, model
performance is confined within a relatively narrow range,
making it challenging to detect significant correlations.

Our study has limitations that warrant future investigation. First,
this study exclusively examined the use of supervised learning
based on labeled samples. Future researchers may explore the
augmentation of labeled samples [168, 169] or training strategy of
semisupervision [54, 112] or metalearning [170, 171] to further
upgrade model performance without additional annotation
burden [29]. From the data augmentation perspective, Shi et al.
proposed to stitch four intraclass images together and resize them
to the same size as the original image to unleash the potential
value of limited annotated samples [31]. From both empirical
improvements in AL performance and theoretical distribution
similarity in high‐level semantic space, they validated the positive
impact of data augmentation towards AL [172]. Beyond aggre-
gation of existing samples in the pixel space [173], Mahapatra
et al. employed generative adversarial networks [165] to synthe-
size realistic chest radiographs from a limited set of anatomy
annotations [174]. By incorporating these generated samples and
associated annotations into the training set, they achieved a
substantial improvement in model accuracy. From the semi-
supervised view, Bai et al. proposed to combine expert‐annotating
labels with model‐predicting pseudo labels to boost model per-
formance [175]. To eliminate the training instability caused
by pseudo labels, they designed a noise filter to filter pseudo
labels with low fidelity, avoiding the improvement brought by
informative pseudo labels being impaired by noisy ones [176].
Metalearning is another direction to improve DL performance
using auxiliary tasks to generate a robust model that converges to
the target task with minimal labeled samples [177]. Yuan et al.
designed a training strategy that combines metalearning with AL,
including two phases where the first phase aims to pretrain a
metalearner possessing sensitive perceptron on the target data
domain and the second phase is to select samples with the
highest uncertainty on the target task [90]. The main difference
between the foundation model and metamodel is that the gen-
eration mechanism is based on self‐supervised learning or aux-
iliary tasks‐based supervised learning and the integration of these
two techniques has been investigated by recent studies [178, 179].

Second, our pipeline for cold‐start AL was designed with
modular components, and substituting the current techniques
with alternative methods would enhance the credibility of our
current findings. Foundation models can be replaced with
momentum contrast for chest x‐rays [180, 181] or in‐house
developed self‐supervised models [72, 182]. Sampling strategies
can also be extended to advanced techniques. For example, the
current diversity sampling used K‐means as the backbone and
designated the sample closest to cluster centers as the repre-
sentative one. Moving forward, we will include refined metrics
of representativeness such as information density, which

calculates the similarity between embeddings of a particular
sample and others within the same cluster [23]. K‐means can
also be substituted with alternative methods such as BIRCH
[183], which empirical evidence suggests is more robust against
noisy data and imbalanced labels [23]. Similarly, the hybrid
sampling strategy follows a static combination of representa-
tiveness and uncertainty while some dynamic reweighting
combinations may achieve superior performance [27].
Furthermore, the static strategies can be enhanced with
reinforcement learning policies such as multiarmed bandit
[184] or actor‐critic method [30] to actively switch different
sampling strategies based on the state of classifiers and the
current environment [185]. Additionally, we evaluated the
performance of cold‐start AL within a limited set of configu-
rations, comprising one DL backbone, one imaging modality,
two close‐set binary classification targets [186], and no consid-
eration of real labeling time. Future endeavors may encompass
alternative DL backbones including vision transformer [187],
additional imaging modalities such as positron emission
tomography [188], different targets like open‐set classification
[28] or lesion segmentation, and comparison at both levels of
sample numbers and overall annotation time [32] for a more
thorough comparison [189, 190]. These comprehensive experi-
ments would further substantiate the findings of this study re-
garding the application of foundation models in AL.

Last, our study represents an initial attempt to leverage domain‐
specific foundation models in AL and highlights promising ave-
nues for future research in both foundation models and AL
strategies. For foundation models, they did not exhibit superior
generalization capabilities compared to general pretrained mod-
els, highlighting the need for further refinement to achieve their
intended objective of versatile performance across diverse tasks
[191]. Future research could explore the integration of medical
knowledge or the adoption of a federated learning framework
[192–194] to construct substantially larger training data sets,
thereby enhancing model performance in accordance with scaling
laws [87, 195]. For AL strategies, foundation models can serve as
providers of representations. A low‐hanging fruit is to integrate
foundation models with strategies that require representations at
specific stages of AL or to directly replace DL backbones in target
tasks with foundation models, thereby exploring whether
AL performance can be enhanced. A more ambitious direction is
to exploit the potential of foundation models across different
modalities for joint AL. On the one hand, joint AL can involve
multiple modalities within medical imaging, such as magnetic
resonance imaging, computed tomography, and positron emission
tomography [196–198]. On the other hand, it can involve com-
bining a medical imaging modality with another modality, such
as chest radiographs and radiological reports [199–203].

5 | Conclusion

Pretraining has been a cornerstone of DL‐based chest radiograph
analysis, yet it remains unresolved whether domain‐specific
pretraining outperforms general domain pretraining in the con-
text of cold‐start AL. In this study, we demonstrated the
inefficiency of domain‐specific foundation models compared to
general pretrained ImageNet models for two binary classification
tasks. Despite this, initialization methods based on both models
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significantly outperformed random sampling, the default method
for cold‐start AL initialization. Furthermore, we uncovered a
positive correlation between different stages of cold‐start AL and
found comparable performance between one‐shot initialization
and full AL processes. In addition, the influence of class balance
in the initialization samples on subsequent learning outcomes
warrants careful consideration, particularly in middle‐budget
scenarios. We anticipate that this study will inspire researchers to
enhance pretraining for generalist medical artificial intelligence
and explore novel AL methods based on various pretrained
models.
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TABLE A1 | Initialization performance of random sampling, diversity, uncertainty, and hybrid methods on the Guangzhou data set.

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

All samples / / Original pixel 0.998 (0.001) 0.999 (0.000)

TXRV 0.938 (0.007) 0.977 (0.003)

REMEDIS 0.993 (0.003) 0.997 (0.002)

DenseNet 0.848 (0.012) 0.939 (0.007)

ResNet 0.990 (0.003) 0.996 (0.001)

10 / Random Original pixel 0.898 (0.121) 0.954 (0.066)

TXRV 0.599 (0.120) 0.797 (0.072)

REMEDIS 0.764 (0.130) 0.872 (0.075)

DenseNet 0.688 (0.089) 0.838 (0.054)

ResNet 0.745 (0.097) 0.866 (0.056)

TXRV Diversity Original pixel 0.958 (0.006) 0.981 (0.005)

TXRV 0.466 (0.018) 0.703 (0.018)

Uncertainty Original pixel 0.573 (0.020) 0.777 (0.017)

TXRV 0.425 (0.017) 0.700 (0.019)

Hybrid Original pixel 0.885 (0.010) 0.954 (0.006)

TXRV 0.551 (0.018) 0.771 (0.017)

REMEDIS Diversity Original pixel 0.952 (0.006) 0.982 (0.003)

REMEDIS 0.475 (0.019) 0.780 (0.013)

Uncertainty Original pixel 0.874 (0.011) 0.933 (0.010)

REMEDIS 0.713 (0.016) 0.877 (0.010)

Hybrid Original pixel 0.948 (0.006) 0.980 (0.003)

REMEDIS 0.870 (0.015) 0.921 (0.011)

DenseNet Diversity Original pixel 0.963 (0.006) 0.983 (0.004)

DenseNet 0.640 (0.021) 0.781 (0.016)

Uncertainty Original pixel 0.568 (0.018) 0.756 (0.019)

DenseNet 0.615 (0.018) 0.809 (0.013)

Hybrid Original pixel 0.629 (0.017) 0.796 (0.016)

DenseNet 0.774 (0.017) 0.897 (0.010)

ResNet Diversity Original pixel 0.972 (0.004) 0.989 (0.002)

ResNet 0.854 (0.013) 0.923 (0.011)

Uncertainty Original pixel 0.925 (0.007) 0.973 (0.003)

ResNet 0.569 (0.018) 0.780 (0.016)

Hybrid Original pixel 0.914 (0.009) 0.962 (0.005)

ResNet 0.758 (0.017) 0.849 (0.016)

20 / Random Original pixel 0.953 (0.020) 0.980 (0.009)

TXRV 0.697 (0.108) 0.848 (0.061)

REMEDIS 0.879 (0.077) 0.930 (0.057)

DenseNet 0.856 (0.058) 0.925 (0.039)

ResNet 0.873 (0.059) 0.938 (0.032)

TXRV Diversity Original pixel 0.964 (0.006) 0.985 (0.003)

TXRV 0.754 (0.016) 0.874 (0.013)
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TABLE A1 | (Continued)

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

Uncertainty Original pixel 0.828 (0.014) 0.926 (0.009)

TXRV 0.488 (0.018) 0.748 (0.017)

Hybrid Original pixel 0.957 (0.006) 0.981 (0.004)

TXRV 0.528 (0.017) 0.759 (0.018)

REMEDIS Diversity Original pixel 0.982 (0.004) 0.992 (0.003)

REMEDIS 0.830 (0.013) 0.925 (0.010)

Uncertainty Original pixel 0.978 (0.003) 0.991 (0.001)

REMEDIS 0.840 (0.014) 0.916 (0.009)

Hybrid Original pixel 0.961 (0.005) 0.986 (0.002)

REMEDIS 0.917 (0.010) 0.964 (0.008)

DenseNet Diversity Original pixel 0.977 (0.004) 0.991 (0.002)

DenseNet 0.897 (0.009) 0.956 (0.006)

Uncertainty Original pixel 0.530 (0.019) 0.729 (0.017)

DenseNet 0.711 (0.018) 0.861 (0.012)

Hybrid Original pixel 0.906 (0.009) 0.964 (0.004)

DenseNet 0.905 (0.010) 0.954 (0.007)

ResNet Diversity Original pixel 0.972 (0.005) 0.989 (0.003)

ResNet 0.895 (0.011) 0.958 (0.006)

Uncertainty Original pixel 0.953 (0.007) 0.982 (0.003)

ResNet 0.888 (0.010) 0.952 (0.007)

Hybrid Original pixel 0.922 (0.009) 0.968 (0.005)

ResNet 0.892 (0.010) 0.958 (0.005)

30 / Random Original pixel 0.969 (0.011) 0.988 (0.005)

TXRV 0.763 (0.060) 0.885 (0.035)

REMEDIS 0.885 (0.067) 0.931 (0.042)

DenseNet 0.901 (0.034) 0.952 (0.019)

ResNet 0.905 (0.041) 0.955 (0.024)

TXRV Diversity Original pixel 0.973 (0.004) 0.989 (0.003)

TXRV 0.816 (0.012) 0.913 (0.010)

Uncertainty Original pixel 0.913 (0.009) 0.961 (0.006)

TXRV 0.612 (0.016) 0.816 (0.014)

Hybrid Original pixel 0.977 (0.004) 0.991 (0.002)

TXRV 0.840 (0.012) 0.927 (0.009)

REMEDIS Diversity Original pixel 0.982 (0.004) 0.992 (0.002)

REMEDIS 0.924 (0.008) 0.966 (0.006)

Uncertainty Original pixel 0.950 (0.006) 0.980 (0.003)

REMEDIS 0.849 (0.014) 0.931 (0.009)

Hybrid Original pixel 0.974 (0.004) 0.990 (0.002)

REMEDIS 0.934 (0.010) 0.967 (0.007)

DenseNet Diversity Original pixel 0.968 (0.005) 0.987 (0.003)

DenseNet 0.928 (0.008) 0.964 (0.006)

Uncertainty Original pixel 0.831 (0.015) 0.911 (0.012)

DenseNet 0.683 (0.017) 0.822 (0.014)

(Continues)

132 of 161 Health Care Science, 2025

 27711757, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hcs2.70009, W

iley O
nline L

ibrary on [18/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE A1 | (Continued)

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

Hybrid Original pixel 0.969 (0.004) 0.989 (0.002)

DenseNet 0.899 (0.012) 0.945 (0.008)

ResNet Diversity Original pixel 0.979 (0.004) 0.992 (0.002)

ResNet 0.912 (0.008) 0.968 (0.004)

Uncertainty Original pixel 0.962 (0.005) 0.985 (0.002)

ResNet 0.884 (0.010) 0.951 (0.007)

Hybrid Original pixel 0.960 (0.007) 0.983 (0.004)

ResNet 0.911 (0.008) 0.964 (0.005)

40 / Random Original pixel 0.975 (0.009) 0.990 (0.004)

TXRV 0.785 (0.056) 0.896 (0.033)

REMEDIS 0.906 (0.046) 0.943 (0.035)

DenseNet 0.921 (0.030) 0.963 (0.017)

ResNet 0.922 (0.028) 0.963 (0.018)

TXRV Diversity Original pixel 0.985 (0.003) 0.994 (0.001)

TXRV 0.735 (0.015) 0.872 (0.011)

Uncertainty Original pixel 0.969 (0.005) 0.987 (0.003)

TXRV 0.653 (0.016) 0.843 (0.012)

Hybrid Original pixel 0.976 (0.004) 0.991 (0.002)

TXRV 0.788 (0.012) 0.907 (0.008)

REMEDIS Diversity Original pixel 0.979 (0.004) 0.992 (0.003)

REMEDIS 0.921 (0.007) 0.962 (0.008)

Uncertainty Original pixel 0.967 (0.006) 0.986 (0.003)

REMEDIS 0.829 (0.013) 0.907 (0.012)

Hybrid Original pixel 0.979 (0.003) 0.992 (0.001)

REMEDIS 0.920 (0.011) 0.948 (0.011)

DenseNet Diversity Original pixel 0.983 (0.003) 0.993 (0.002)

DenseNet 0.920 (0.008) 0.967 (0.005)

Uncertainty Original pixel 0.890 (0.012) 0.946 (0.009)

DenseNet 0.873 (0.010) 0.946 (0.007)

Hybrid Original pixel 0.973 (0.005) 0.987 (0.004)

DenseNet 0.917 (0.009) 0.961 (0.006)

ResNet Diversity Original pixel 0.980 (0.004) 0.991 (0.003)

ResNet 0.948 (0.007) 0.977 (0.004)

Uncertainty Original pixel 0.956 (0.006) 0.982 (0.003)

ResNet 0.872 (0.010) 0.945 (0.006)

Hybrid Original pixel 0.966 (0.005) 0.985 (0.003)

ResNet 0.907 (0.009) 0.958 (0.007)

50 / Random Original pixel 0.978 (0.007) 0.991 (0.004)

TXRV 0.799 (0.042) 0.904 (0.026)

REMEDIS 0.915 (0.040) 0.947 (0.034)

DenseNet 0.936 (0.021) 0.970 (0.014)

ResNet 0.934 (0.022) 0.969 (0.014)

TXRV Diversity Original pixel 0.982 (0.004) 0.993 (0.002)
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TABLE A1 | (Continued)

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

TXRV 0.822 (0.014) 0.915 (0.011)

Uncertainty Original pixel 0.971 (0.005) 0.989 (0.003)

TXRV 0.770 (0.013) 0.906 (0.008)

Hybrid Original pixel 0.984 (0.003) 0.993 (0.002)

TXRV 0.734 (0.014) 0.877 (0.013)

REMEDIS Diversity Original pixel 0.983 (0.003) 0.994 (0.002)

REMEDIS 0.902 (0.010) 0.964 (0.006)

Uncertainty Original pixel 0.972 (0.004) 0.989 (0.002)

REMEDIS 0.793 (0.014) 0.893 (0.011)

Hybrid Original pixel 0.980 (0.003) 0.993 (0.001)

REMEDIS 0.948 (0.008) 0.958 (0.009)

DenseNet Diversity Original pixel 0.981 (0.004) 0.992 (0.002)

DenseNet 0.911 (0.010) 0.958 (0.006)

Uncertainty Original pixel 0.968 (0.005) 0.987 (0.002)

DenseNet 0.923 (0.008) 0.971 (0.003)

Hybrid Original pixel 0.978 (0.004) 0.990 (0.003)

DenseNet 0.821 (0.011) 0.926 (0.008)

ResNet Diversity Original pixel 0.984 (0.003) 0.993 (0.002)

ResNet 0.972 (0.004) 0.989 (0.002)

Uncertainty Original pixel 0.964 (0.005) 0.984 (0.003)

ResNet 0.858 (0.012) 0.932 (0.009)

Hybrid Original pixel 0.963 (0.006) 0.985 (0.003)

ResNet 0.921 (0.009) 0.959 (0.008)

TABLE A2 | Initialization performance of random sampling, diversity, uncertainty, and hybrid methods on the Pakistan data set.

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

All samples / / Original pixel 0.994 (0.003) 0.999 (0.001)

TXRV 0.991 (0.006) 0.999 (0.001)

REMEDIS 0.968 (0.016) 0.994 (0.003)

DenseNet 0.964 (0.023) 0.987 (0.010)

ResNet 0.993 (0.005) 0.999 (0.001)

10 / Random Original pixel 0.794 (0.144) 0.951 (0.047)

TXRV 0.669 (0.147) 0.914 (0.047)

REMEDIS 0.661 (0.148) 0.915 (0.044)

DenseNet 0.604 (0.096) 0.897 (0.036)

ResNet 0.641 (0.132) 0.907 (0.046)

TXRV Diversity Original pixel 0.909 (0.025) 0.984 (0.005)

TXRV 0.696 (0.051) 0.932 (0.018)

Uncertainty Original pixel 0.888 (0.036) 0.972 (0.013)

TXRV 0.666 (0.050) 0.926 (0.020)

Hybrid Original pixel 0.940 (0.024) 0.989 (0.006)

TXRV 0.678 (0.050) 0.929 (0.019)
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TABLE A2 | (Continued)

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

REMEDIS Diversity Original pixel 0.745 (0.040) 0.949 (0.013)

REMEDIS 0.705 (0.064) 0.926 (0.019)

Uncertainty Original pixel 0.790 (0.041) 0.958 (0.013)

REMEDIS 0.796 (0.041) 0.957 (0.016)

Hybrid Original pixel 0.963 (0.015) 0.994 (0.003)

REMEDIS 0.636 (0.068) 0.899 (0.026)

DenseNet Diversity Original pixel 0.860 (0.034) 0.970 (0.011)

DenseNet 0.567 (0.058) 0.879 (0.029)

Uncertainty Original pixel 0.832 (0.047) 0.942 (0.024)

DenseNet 0.548 (0.057) 0.891 (0.025)

Hybrid Original pixel 0.846 (0.043) 0.970 (0.010)

DenseNet 0.604 (0.058) 0.884 (0.030)

ResNet Diversity Original pixel 0.897 (0.029) 0.980 (0.008)

ResNet 0.774 (0.039) 0.954 (0.012)

Uncertainty Original pixel 0.888 (0.043) 0.974 (0.012)

ResNet 0.738 (0.048) 0.939 (0.019)

Hybrid Original pixel 0.908 (0.040) 0.978 (0.011)

ResNet 0.733 (0.046) 0.938 (0.020)

20 / Random Original pixel 0.874 (0.129) 0.972 (0.039)

TXRV 0.775 (0.142) 0.942 (0.044)

REMEDIS 0.792 (0.146) 0.947 (0.047)

DenseNet 0.740 (0.106) 0.931 (0.036)

ResNet 0.750 (0.111) 0.939 (0.039)

TXRV Diversity Original pixel 0.933 (0.021) 0.989 (0.004)

TXRV 0.948 (0.018) 0.991 (0.003)

Uncertainty Original pixel 0.877 (0.034) 0.972 (0.011)

TXRV 0.819 (0.046) 0.948 (0.020)

Hybrid Original pixel 0.944 (0.018) 0.991 (0.003)

TXRV 0.952 (0.018) 0.992 (0.003)

REMEDIS Diversity Original pixel 0.859 (0.048) 0.968 (0.014)

REMEDIS 0.880 (0.028) 0.980 (0.006)

Uncertainty Original pixel 0.948 (0.024) 0.990 (0.005)

REMEDIS 0.733 (0.044) 0.931 (0.022)

Hybrid Original pixel 0.878 (0.040) 0.973 (0.012)

REMEDIS 0.954 (0.013) 0.993 (0.002)

DenseNet Diversity Original pixel 0.948 (0.024) 0.989 (0.006)

DenseNet 0.794 (0.044) 0.960 (0.012)

Uncertainty Original pixel 0.888 (0.048) 0.970 (0.016)

DenseNet 0.824 (0.032) 0.970 (0.008)

Hybrid Original pixel 0.970 (0.012) 0.995 (0.002)

DenseNet 0.885 (0.029) 0.973 (0.011)

ResNet Diversity Original pixel 0.946 (0.023) 0.990 (0.005)

ResNet 0.900 (0.039) 0.977 (0.011)
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TABLE A2 | (Continued)

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

Uncertainty Original pixel 0.872 (0.044) 0.962 (0.018)

ResNet 0.861 (0.030) 0.975 (0.007)

Hybrid Original pixel 0.930 (0.026) 0.987 (0.006)

ResNet 0.879 (0.030) 0.977 (0.008)

30 / Random Original pixel 0.899 (0.109) 0.977 (0.032)

TXRV 0.844 (0.109) 0.958 (0.033)

REMEDIS 0.825 (0.125) 0.956 (0.038)

DenseNet 0.814 (0.099) 0.955 (0.030)

ResNet 0.792 (0.103) 0.950 (0.033)

TXRV Diversity Original pixel 0.945 (0.019) 0.991 (0.004)

TXRV 0.954 (0.014) 0.993 (0.002)

Uncertainty Original pixel 0.895 (0.033) 0.977 (0.009)

TXRV 0.896 (0.039) 0.960 (0.023)

Hybrid Original pixel 0.896 (0.034) 0.981 (0.007)

TXRV 0.937 (0.025) 0.987 (0.005)

REMEDIS Diversity Original pixel 0.832 (0.057) 0.958 (0.017)

REMEDIS 0.761 (0.054) 0.934 (0.022)

Uncertainty Original pixel 0.960 (0.020) 0.992 (0.004)

REMEDIS 0.848 (0.043) 0.966 (0.012)

Hybrid Original pixel 0.909 (0.026) 0.984 (0.006)

REMEDIS 0.919 (0.026) 0.985 (0.007)

DenseNet Diversity Original pixel 0.963 (0.014) 0.994 (0.002)

DenseNet 0.847 (0.036) 0.971 (0.009)

Uncertainty Original pixel 0.891 (0.048) 0.972 (0.013)

DenseNet 0.777 (0.050) 0.944 (0.020)

Hybrid Original pixel 0.973 (0.009) 0.996 (0.002)

DenseNet 0.900 (0.023) 0.983 (0.005)

ResNet Diversity Original pixel 0.910 (0.038) 0.978 (0.012)

ResNet 0.817 (0.049) 0.963 (0.013)

Uncertainty Original pixel 0.925 (0.028) 0.985 (0.006)

ResNet 0.688 (0.042) 0.942 (0.013)

Hybrid Original pixel 0.943 (0.019) 0.990 (0.004)

ResNet 0.852 (0.038) 0.970 (0.010)

40 / Random Original pixel 0.931 (0.074) 0.986 (0.020)

TXRV 0.880 (0.093) 0.967 (0.028)

REMEDIS 0.853 (0.101) 0.963 (0.036)

DenseNet 0.860 (0.074) 0.965 (0.025)

ResNet 0.825 (0.096) 0.958 (0.030)

TXRV Diversity Original pixel 0.951 (0.018) 0.992 (0.004)

TXRV 0.947 (0.024) 0.991 (0.004)

Uncertainty Original pixel 0.918 (0.038) 0.978 (0.012)

TXRV 0.868 (0.043) 0.951 (0.025)

Hybrid Original pixel 0.974 (0.009) 0.996 (0.002)
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TABLE A2 | (Continued)

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

TXRV 0.973 (0.010) 0.996 (0.002)

REMEDIS Diversity Original pixel 0.956 (0.021) 0.991 (0.005)

REMEDIS 0.835 (0.028) 0.974 (0.007)

Uncertainty Original pixel 0.953 (0.024) 0.990 (0.005)

REMEDIS 0.821 (0.049) 0.953 (0.016)

Hybrid Original pixel 0.944 (0.030) 0.989 (0.007)

REMEDIS 0.927 (0.029) 0.983 (0.009)

DenseNet Diversity Original pixel 0.945 (0.021) 0.990 (0.004)

DenseNet 0.879 (0.035) 0.964 (0.020)

Uncertainty Original pixel 0.882 (0.047) 0.970 (0.013)

DenseNet 0.780 (0.031) 0.958 (0.013)

Hybrid Original pixel 0.971 (0.013) 0.995 (0.003)

DenseNet 0.912 (0.020) 0.985 (0.004)

ResNet Diversity Original pixel 0.914 (0.040) 0.981 (0.010)

ResNet 0.815 (0.050) 0.957 (0.015)

Uncertainty Original pixel 0.936 (0.030) 0.987 (0.007)

ResNet 0.723 (0.036) 0.949 (0.012)

Hybrid Original pixel 0.962 (0.017) 0.993 (0.004)

ResNet 0.861 (0.036) 0.972 (0.010)

50 / Random Original pixel 0.947 (0.042) 0.990 (0.010)

TXRV 0.890 (0.085) 0.970 (0.027)

REMEDIS 0.880 (0.075) 0.972 (0.029)

DenseNet 0.880 (0.067) 0.972 (0.021)

ResNet 0.843 (0.079) 0.963 (0.025)

TXRV Diversity Original pixel 0.985 (0.007) 0.998 (0.001)

TXRV 0.932 (0.024) 0.987 (0.005)

Uncertainty Original pixel 0.931 (0.025) 0.986 (0.006)

TXRV 0.901 (0.036) 0.971 (0.017)

Hybrid Original pixel 0.990 (0.006) 0.998 (0.001)

TXRV 0.963 (0.017) 0.993 (0.004)

REMEDIS Diversity Original pixel 0.960 (0.014) 0.993 (0.003)

REMEDIS 0.947 (0.017) 0.991 (0.004)

Uncertainty Original pixel 0.948 (0.027) 0.989 (0.006)

REMEDIS 0.754 (0.029) 0.956 (0.011)

Hybrid Original pixel 0.972 (0.011) 0.996 (0.002)

REMEDIS 0.915 (0.016) 0.988 (0.003)

DenseNet Diversity Original pixel 0.970 (0.013) 0.995 (0.003)

DenseNet 0.940 (0.021) 0.989 (0.005)

Uncertainty Original pixel 0.959 (0.024) 0.992 (0.005)

DenseNet 0.767 (0.028) 0.961 (0.008)

Hybrid Original pixel 0.973 (0.011) 0.996 (0.002)

DenseNet 0.875 (0.038) 0.961 (0.020)

ResNet Diversity Original pixel 0.946 (0.026) 0.988 (0.007)
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TABLE A2 | (Continued)

Initialization budget Foundation model Initialization method Model input AUROC AUPRC

ResNet 0.815 (0.047) 0.955 (0.016)

Uncertainty Original pixel 0.928 (0.026) 0.987 (0.006)

ResNet 0.805 (0.039) 0.966 (0.009)

Hybrid Original pixel 0.978 (0.009) 0.997 (0.002)

ResNet 0.872 (0.036) 0.974 (0.009)

TABLE A3 | Subsequent learning performance of random sampling, diversity, uncertainty, and hybrid methods on the Guangzhou data set.

Overall budget Foundation model Initialization method Model input AUROC AUPRC

All samples / / Original pixel 0.998 (0.001) 0.999 (0.000)

TXRV 0.938 (0.007) 0.977 (0.003)

REMEDIS 0.993 (0.003) 0.997 (0.002)

DenseNet 0.848 (0.012) 0.939 (0.007)

ResNet 0.990 (0.003) 0.996 (0.001)

10 + 10 / Random Original pixel 0.938 (0.032) 0.974 (0.014)

TXRV 0.689 (0.090) 0.848 (0.052)

REMEDIS 0.882 (0.083) 0.938 (0.057)

DenseNet 0.853 (0.076) 0.927 (0.041)

ResNet 0.869 (0.052) 0.938 (0.032)

TXRV Diversity Original pixel 0.974 (0.004) 0.989 (0.003)

TXRV 0.476 (0.022) 0.704 (0.019)

Uncertainty Original pixel 0.913 (0.008) 0.968 (0.004)

TXRV 0.460 (0.016) 0.728 (0.018)

Hybrid Original pixel 0.908 (0.008) 0.965 (0.005)

TXRV 0.602 (0.017) 0.806 (0.014)

REMEDIS Diversity Original pixel 0.936 (0.006) 0.977 (0.003)

REMEDIS 0.927 (0.008) 0.968 (0.005)

Uncertainty Original pixel 0.893 (0.011) 0.943 (0.009)

REMEDIS 0.884 (0.012) 0.926 (0.012)

Hybrid Original pixel 0.970 (0.005) 0.988 (0.002)

REMEDIS 0.872 (0.015) 0.910 (0.013)

DenseNet Diversity Original pixel 0.956 (0.005) 0.981 (0.004)

DenseNet 0.867 (0.014) 0.916 (0.012)

Uncertainty Original pixel 0.924 (0.008) 0.966 (0.005)

DenseNet 0.747 (0.015) 0.864 (0.013)

Hybrid Original pixel 0.929 (0.008) 0.971 (0.004)

DenseNet 0.832 (0.013) 0.916 (0.010)

ResNet Diversity Original pixel 0.981 (0.004) 0.993 (0.002)

ResNet 0.894 (0.010) 0.949 (0.007)

Uncertainty Original pixel 0.931 (0.007) 0.975 (0.003)

ResNet 0.870 (0.012) 0.936 (0.010)

Hybrid Original pixel 0.946 (0.006) 0.979 (0.003)

ResNet 0.895 (0.011) 0.948 (0.008)

10 + 20a / Random Original pixel 0.950 (0.031) 0.980 (0.013)
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TABLE A3 | (Continued)

Overall budget Foundation model Initialization method Model input AUROC AUPRC

TXRV 0.745 (0.058) 0.878 (0.035)

REMEDIS 0.898 (0.073) 0.946 (0.044)

DenseNet 0.887 (0.049) 0.944 (0.031)

ResNet 0.896 (0.031) 0.953 (0.020)

TXRV Diversity Original pixel 0.980 (0.004) 0.991 (0.003)

TXRV 0.777 (0.016) 0.886 (0.013)

Uncertainty Original pixel 0.960 (0.005) 0.985 (0.002)

TXRV 0.497 (0.015) 0.753 (0.017)

Hybrid Original pixel 0.964 (0.006) 0.987 (0.003)

TXRV 0.740 (0.013) 0.883 (0.010)

REMEDIS Diversity Original pixel 0.941 (0.007) 0.976 (0.004)

REMEDIS 0.896 (0.011) 0.943 (0.009)

Uncertainty Original pixel 0.896 (0.012) 0.946 (0.007)

REMEDIS 0.885 (0.010) 0.931 (0.011)

Hybrid Original pixel 0.969 (0.004) 0.989 (0.002)

REMEDIS 0.915 (0.010) 0.935 (0.012)

DenseNet Diversity Original pixel 0.973 (0.005) 0.990 (0.003)

DenseNet 0.924 (0.008) 0.969 (0.004)

Uncertainty Original pixel 0.932 (0.007) 0.972 (0.004)

DenseNet 0.756 (0.016) 0.870 (0.014)

Hybrid Original pixel 0.942 (0.007) 0.978 (0.003)

DenseNet 0.928 (0.007) 0.970 (0.004)

ResNet Diversity Original pixel 0.981 (0.004) 0.993 (0.002)

ResNet 0.938 (0.008) 0.974 (0.004)

Uncertainty Original pixel 0.921 (0.008) 0.969 (0.004)

ResNet 0.891 (0.010) 0.946 (0.009)

Hybrid Original pixel 0.963 (0.005) 0.987 (0.002)

ResNet 0.903 (0.008) 0.957 (0.006)

10 + 30 / Random Original pixel 0.958 (0.026) 0.983 (0.011)

TXRV 0.773 (0.054) 0.894 (0.032)

REMEDIS 0.909 (0.051) 0.949 (0.038)

DenseNet 0.910 (0.029) 0.958 (0.018)

ResNet 0.908 (0.032) 0.959 (0.016)

TXRV Diversity Original pixel 0.961 (0.005) 0.985 (0.002)

TXRV 0.859 (0.011) 0.938 (0.008)

Uncertainty Original pixel 0.935 (0.007) 0.973 (0.004)

TXRV 0.529 (0.018) 0.779 (0.015)

Hybrid Original pixel 0.944 (0.007) 0.979 (0.003)

TXRV 0.748 (0.012) 0.890 (0.009)

REMEDIS Diversity Original pixel 0.933 (0.008) 0.974 (0.004)

REMEDIS 0.647 (0.023) 0.736 (0.017)

Uncertainty Original pixel 0.932 (0.008) 0.972 (0.004)

REMEDIS 0.923 (0.008) 0.952 (0.011)
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TABLE A3 | (Continued)

Overall budget Foundation model Initialization method Model input AUROC AUPRC

Hybrid Original pixel 0.969 (0.005) 0.988 (0.003)

REMEDIS 0.929 (0.008) 0.959 (0.009)

DenseNet Diversity Original pixel 0.955 (0.005) 0.982 (0.003)

DenseNet 0.900 (0.009) 0.961 (0.004)

Uncertainty Original pixel 0.954 (0.006) 0.980 (0.004)

DenseNet 0.923 (0.009) 0.949 (0.010)

Hybrid Original pixel 0.924 (0.008) 0.971 (0.004)

DenseNet 0.933 (0.008) 0.973 (0.004)

ResNet Diversity Original pixel 0.977 (0.003) 0.991 (0.002)

ResNet 0.942 (0.007) 0.977 (0.004)

Uncertainty Original pixel 0.949 (0.006) 0.981 (0.003)

ResNet 0.939 (0.007) 0.976 (0.004)

Hybrid Original pixel 0.981 (0.003) 0.993 (0.001)

ResNet 0.921 (0.007) 0.969 (0.004)

10 + 40 / Random Original pixel 0.964 (0.016) 0.986 (0.006)

TXRV 0.787 (0.043) 0.901 (0.025)

REMEDIS 0.913 (0.044) 0.950 (0.035)

DenseNet 0.922 (0.024) 0.964 (0.014)

ResNet 0.919 (0.027) 0.965 (0.013)

TXRV Diversity Original pixel 0.970 (0.005) 0.987 (0.003)

TXRV 0.847 (0.011) 0.929 (0.008)

Uncertainty Original pixel 0.977 (0.004) 0.990 (0.003)

TXRV 0.588 (0.018) 0.803 (0.016)

Hybrid Original pixel 0.962 (0.006) 0.986 (0.002)

TXRV 0.739 (0.014) 0.885 (0.010)

REMEDIS Diversity Original pixel 0.948 (0.006) 0.981 (0.003)

REMEDIS 0.866 (0.013) 0.942 (0.010)

Uncertainty Original pixel 0.944 (0.007) 0.978 (0.003)

REMEDIS 0.928 (0.012) 0.938 (0.014)

Hybrid Original pixel 0.967 (0.005) 0.985 (0.004)

REMEDIS 0.946 (0.009) 0.956 (0.010)

DenseNet Diversity Original pixel 0.980 (0.004) 0.991 (0.002)

DenseNet 0.932 (0.009) 0.968 (0.006)

Uncertainty Original pixel 0.964 (0.005) 0.985 (0.004)

DenseNet 0.945 (0.006) 0.977 (0.004)

Hybrid Original pixel 0.983 (0.003) 0.993 (0.002)

DenseNet 0.917 (0.007) 0.969 (0.003)

ResNet Diversity Original pixel 0.976 (0.003) 0.991 (0.002)

ResNet 0.938 (0.009) 0.967 (0.008)

Uncertainty Original pixel 0.954 (0.006) 0.983 (0.003)

ResNet 0.943 (0.006) 0.978 (0.003)

Hybrid Original pixel 0.977 (0.004) 0.991 (0.002)

ResNet 0.922 (0.008) 0.966 (0.006)

aThe overall budget consists of both the initialization and subsequent learning components. For instance, a budget of 10 + 20 indicates an initialization budget comprising
10 samples and a subsequent learning budget also comprising 20 samples.
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TABLE A4 | Subsequent learning performance of random sampling, diversity, uncertainty, and hybrid methods on the Pakistan data set.

Overall budget Foundation model Initialization method Model input AUROC AUPRC

All samples / / Original pixel 0.994 (0.003) 0.999 (0.001)

TXRV 0.991 (0.006) 0.999 (0.001)

REMEDIS 0.968 (0.016) 0.994 (0.003)

DenseNet 0.964 (0.023) 0.987 (0.010)

ResNet 0.993 (0.005) 0.999 (0.001)

10 + 10 / Random Original pixel 0.838 (0.125) 0.963 (0.037)

TXRV 0.795 (0.135) 0.948 (0.038)

REMEDIS 0.791 (0.176) 0.947 (0.057)

DenseNet 0.743 (0.103) 0.936 (0.033)

ResNet 0.757 (0.107) 0.943 (0.031)

TXRV Diversity Original pixel 0.928 (0.018) 0.988 (0.004)

TXRV 0.574 (0.046) 0.894 (0.032)

Uncertainty Original pixel 0.899 (0.030) 0.979 (0.008)

TXRV 0.866 (0.034) 0.959 (0.021)

Hybrid Original pixel 0.945 (0.018) 0.991 (0.003)

TXRV 0.863 (0.045) 0.950 (0.024)

REMEDIS Diversity Original pixel 0.792 (0.049) 0.958 (0.013)

REMEDIS 0.872 (0.045) 0.960 (0.019)

Uncertainty Original pixel 0.739 (0.046) 0.948 (0.013)

REMEDIS 0.814 (0.047) 0.939 (0.024)

Hybrid Original pixel 0.904 (0.033) 0.981 (0.008)

REMEDIS 0.965 (0.011) 0.994 (0.002)

DenseNet Diversity Original pixel 0.873 (0.032) 0.975 (0.009)

DenseNet 0.845 (0.048) 0.950 (0.023)

Uncertainty Original pixel 0.910 (0.044) 0.976 (0.012)

DenseNet 0.746 (0.045) 0.924 (0.027)

Hybrid Original pixel 0.847 (0.041) 0.971 (0.010)

DenseNet 0.830 (0.028) 0.970 (0.007)

ResNet Diversity Original pixel 0.826 (0.054) 0.953 (0.020)

ResNet 0.848 (0.036) 0.970 (0.008)

Uncertainty Original pixel 0.930 (0.028) 0.986 (0.007)

ResNet 0.796 (0.046) 0.959 (0.011)

Hybrid Original pixel 0.940 (0.016) 0.990 (0.004)

ResNet 0.880 (0.030) 0.979 (0.007)

10 + 20a / Random Original pixel 0.889 (0.121) 0.976 (0.033)

TXRV 0.860 (0.101) 0.966 (0.028)

REMEDIS 0.840 (0.114) 0.963 (0.033)

DenseNet 0.787 (0.093) 0.949 (0.030)

ResNet 0.803 (0.098) 0.955 (0.028)

TXRV Diversity Original pixel 0.956 (0.014) 0.993 (0.003)

TXRV 0.869 (0.040) 0.972 (0.010)

Uncertainty Original pixel 0.904 (0.029) 0.980 (0.008)

TXRV 0.881 (0.031) 0.972 (0.013)
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TABLE A4 | (Continued)

Overall budget Foundation model Initialization method Model input AUROC AUPRC

Hybrid Original pixel 0.954 (0.013) 0.992 (0.003)

TXRV 0.933 (0.031) 0.983 (0.010)

REMEDIS Diversity Original pixel 0.963 (0.012) 0.994 (0.002)

REMEDIS 0.807 (0.042) 0.954 (0.015)

Uncertainty Original pixel 0.790 (0.048) 0.959 (0.012)

REMEDIS 0.904 (0.037) 0.975 (0.012)

Hybrid Original pixel 0.920 (0.033) 0.984 (0.007)

REMEDIS 0.909 (0.027) 0.981 (0.008)

DenseNet Diversity Original pixel 0.880 (0.029) 0.978 (0.007)

DenseNet 0.917 (0.020) 0.987 (0.004)

Uncertainty Original pixel 0.929 (0.034) 0.984 (0.008)

DenseNet 0.731 (0.052) 0.912 (0.028)

Hybrid Original pixel 0.743 (0.061) 0.941 (0.019)

DenseNet 0.800 (0.043) 0.951 (0.017)

ResNet Diversity Original pixel 0.976 (0.008) 0.996 (0.001)

ResNet 0.886 (0.037) 0.962 (0.016)

Uncertainty Original pixel 0.936 (0.028) 0.987 (0.007)

ResNet 0.860 (0.033) 0.975 (0.007)

Hybrid Original pixel 0.963 (0.011) 0.994 (0.002)

ResNet 0.870 (0.036) 0.973 (0.008)

10 + 30 / Random Original pixel 0.924 (0.080) 0.985 (0.018)

TXRV 0.885 (0.065) 0.971 (0.022)

REMEDIS 0.881 (0.083) 0.974 (0.024)

DenseNet 0.819 (0.086) 0.955 (0.029)

ResNet 0.829 (0.085) 0.962 (0.024)

TXRV Diversity Original pixel 0.967 (0.012) 0.995 (0.002)

TXRV 0.910 (0.034) 0.970 (0.018)

Uncertainty Original pixel 0.911 (0.032) 0.981 (0.008)

TXRV 0.868 (0.037) 0.957 (0.021)

Hybrid Original pixel 0.932 (0.019) 0.988 (0.004)

TXRV 0.947 (0.033) 0.981 (0.014)

REMEDIS Diversity Original pixel 0.967 (0.011) 0.995 (0.002)

REMEDIS 0.861 (0.037) 0.967 (0.014)

Uncertainty Original pixel 0.874 (0.041) 0.973 (0.010)

REMEDIS 0.728 (0.055) 0.910 (0.030)

Hybrid Original pixel 0.918 (0.030) 0.985 (0.007)

REMEDIS 0.705 (0.058) 0.898 (0.031)

DenseNet Diversity Original pixel 0.899 (0.030) 0.978 (0.009)

DenseNet 0.885 (0.029) 0.978 (0.008)

Uncertainty Original pixel 0.910 (0.038) 0.979 (0.009)

DenseNet 0.841 (0.031) 0.975 (0.006)

Hybrid Original pixel 0.892 (0.032) 0.978 (0.010)

DenseNet 0.780 (0.044) 0.951 (0.015)
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TABLE A4 | (Continued)

Overall budget Foundation model Initialization method Model input AUROC AUPRC

ResNet Diversity Original pixel 0.973 (0.009) 0.996 (0.002)

ResNet 0.845 (0.039) 0.958 (0.019)

Uncertainty Original pixel 0.921 (0.028) 0.985 (0.006)

ResNet 0.843 (0.042) 0.952 (0.020)

Hybrid Original pixel 0.961 (0.011) 0.994 (0.002)

ResNet 0.879 (0.027) 0.979 (0.006)

10 + 40 / Random Original pixel 0.943 (0.042) 0.989 (0.009)

TXRV 0.906 (0.050) 0.976 (0.019)

REMEDIS 0.867 (0.100) 0.969 (0.034)

DenseNet 0.846 (0.068) 0.961 (0.025)

ResNet 0.854 (0.062) 0.969 (0.018)

TXRV Diversity Original pixel 0.951 (0.015) 0.992 (0.003)

TXRV 0.923 (0.018) 0.987 (0.004)

Uncertainty Original pixel 0.911 (0.025) 0.983 (0.007)

TXRV 0.836 (0.043) 0.950 (0.020)

Hybrid Original pixel 0.919 (0.028) 0.985 (0.006)

TXRV 0.961 (0.020) 0.993 (0.004)

REMEDIS Diversity Original pixel 0.950 (0.017) 0.992 (0.003)

REMEDIS 0.920 (0.032) 0.985 (0.006)

Uncertainty Original pixel 0.865 (0.034) 0.973 (0.009)

REMEDIS 0.837 (0.035) 0.966 (0.014)

Hybrid Original pixel 0.932 (0.026) 0.987 (0.006)

REMEDIS 0.959 (0.013) 0.993 (0.002)

DenseNet Diversity Original pixel 0.938 (0.022) 0.990 (0.004)

DenseNet 0.942 (0.017) 0.990 (0.004)

Uncertainty Original pixel 0.935 (0.026) 0.986 (0.007)

DenseNet 0.849 (0.030) 0.973 (0.007)

Hybrid Original pixel 0.970 (0.013) 0.995 (0.002)

DenseNet 0.851 (0.035) 0.972 (0.008)

ResNet Diversity Original pixel 0.980 (0.009) 0.997 (0.002)

ResNet 0.934 (0.016) 0.989 (0.003)

Uncertainty Original pixel 0.935 (0.023) 0.988 (0.005)

ResNet 0.885 (0.032) 0.979 (0.007)

Hybrid Original pixel 0.982 (0.007) 0.997 (0.001)

ResNet 0.861 (0.034) 0.974 (0.008)

aThe overall budget consists of both the initialization and subsequent learning components. For instance, a budget of 10 + 20 indicates an initialization budget comprising
10 samples and a subsequent learning budget comprising 20 samples.
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